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Abstract

In this study, we investigate the possibility of mode localization occurrence in a non-periodic Pflüger’s column model of

a rocket with an intermediate concentrated mass at its middle point. We discuss the effects of varying the intermediate

mass magnitude and its position and the resulting energy confinement for two cases. Free vibration analysis and the

severity of mode localization are appraised, without decoupling the system, by considering as a solution basis the

fundamental free response or dynamical solution. This allows for the reduction of the dimension of the algebraic modal

equation that arises from satisfying the boundary and continuity conditions. By using the same methodology, we also

consider the case of a cantilevered Plüger’s column with rotational stiffness at the middle support instead of an

intermediate concentrated mass.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For weakly coupled quasi-periodic structural systems, mode localization is a phenomenon in which the free
vibration modes will typically be spatially localized, resulting in confined regions of the structure where the
vibration energy is concentrated. This can be used as a possible control technique. Typically, some modular
structures may be very sensitive to small imperfections, that is, the mathematical model can differ from the
real physical system, due to small variations, such as a manufacturing error, a geometrical irregularity, or a
mistuned parameter, leading to energy confinement. Due to these reasons, the subject is worthy of theoretical
studies leading to some guidance for engineering practice. See, for example, Refs. [1–4]. All these, and others
previous works, are mainly concerned with disordered periodic structures. To our knowledge, the energy
confinement phenomenon in non-periodic structures has not being considered.

In this work, we study the normal modes and the possibility of mode localization occurrence in a non-

periodic structure. We discuss possible mode localization due to the effects of varying the magnitude or the
position of an intermediate concentrated mass in a column model of a rocket. We consider a non-periodic
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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cantilevered Plüger’s column subjected (or not) to a tangential follower thrust provided by a solid fuel rocket
motor at the bottom end of the column. The vibration modes of such a system are determined with the use of a
fundamental free response. This allows for the reduction of the dimension of the algebraic modal equation
that arises from satisfying the boundary and continuity conditions. Further, we work in the physical space of
the problem, without using the so-called state space formulation. Using the same methodology, we also
comment the case of a cantilevered Plüger’s column with rotational stiffness at the middle support instead of
an intermediate concentrated mass.

2. Problem statement

We consider the transverse vibrations of a two-span Plüger’s column. The system is modelled as a cantilever
column subjected to a tangential follower thrust provided by a solid fuel rocket motor at the bottom end of the
column, and with an intermediate concentrated mass attached at a middle point in the column. The rocket
motor is considered as a rigid body. A mathematical model of the column is shown in Fig. 1.

The equations of small motions of each span are given by

mj

q2wjðt;xjÞ

qt2
þ P

q2wjðt;xjÞ

qx2
j

þ EIj

q4wjðt; xjÞ

qx4
j

¼ 0 (1)

for j ¼ 1; 2, where mj are masses per unit length, EIj are flexural stiffness products for each substructure and P

is the tangential follower thrust. The column has a total length L. The rocket motor is considered as a rigid
body with M mass.

The boundary conditions at x ¼ 0 and x ¼ L are given by

wðt; 0Þ ¼ w0ðt; 0Þ ¼ 0; EIw00ðt;LÞ ¼ 0; EIw000ðt;LÞ ¼M €wðt;LÞ (2)

and we have the intermediate compatibility conditions at x ¼ x1:

w1ðt;x1Þ ¼ w2ðt;x1Þ; w01ðt;x1Þ ¼ w02ðt;x1Þ,

EI1w001ðt;x1Þ ¼ EI2w002ðt;x1Þ,

�Mc €w2ðt;x1Þ þ EI1w0001 ðt; x1Þ ¼ EI2w
000
2 ðt;x1Þ. (3)

Here Mc is the magnitude of the intermediate concentrated mass.

3. Modal analysis

By inserting a displacement function of the form

wjðt;xjÞ ¼ eltX jðxjÞ (4)
Fig. 1. Cantilevered Plüger’s column.
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and introducing the non-dimensional variables

xj ¼
xj

L
; Zj ¼

wj

L
; tj ¼

t

L2

ffiffiffiffiffiffiffi
EIj

mj

s
,

rj ¼
PL2

EIj

; mj ¼
M

mjL
, (5)

Eqs. (1)–(3) are converted into the following non-dimensional boundary value problem:

X
ðivÞ
j ðxjÞ þ rjX

00
j ðxjÞ þ l2j X jðxjÞ ¼ 0, (6)

X 1ð0Þ ¼ X 01ð0Þ ¼ 0; X 002ð1Þ ¼ 0; X 0002 ð1Þ ¼ m2l
2
2X 2ð1Þ (7)

with the following compatibility conditions:

X 1ðx1Þ ¼ X 2ðx1Þ; X 01ðx1Þ ¼ X 02ðx1Þ,

X 001ðx1Þ ¼ X 002ðx1Þ; X 0002 ðx1Þ ¼ X 0001 ðx1Þ � mcX 1ðx1Þ. (8)

The general solutions of Eq. (6) can be written as

X jðxÞ ¼ AjhðxjÞ þ Bjh
0
ðxjÞ þ Cjh

00
ðxjÞ þDjh

000
ðxjÞ, (9)

where we choose as a solution basis the function hðxjÞ and its first three derivatives h0ðxjÞ, h00ðxjÞ, h000ðxjÞ. This
function is usually referred in literature as dynamical basis or fundamental solution and it is generated by the
solution of the initial value problem [5]:

hðivÞðxjÞ þ rjL
2h00ðxjÞ þ l2j L4hðxjÞ ¼ 0,

hð0Þ ¼ 0; h0ð0Þ ¼ 0; h00ð0Þ ¼ 0; h000ð0Þ ¼ 1. (10)

In terms of the traditional spectral basis, the fundamental solution hðxjÞ has the following representation:

hðxjÞ ¼
dj sinhð�jxjÞ � �j sinðdjxjÞ

�jdjð�2j þ d2j Þ
, (11)

where sj ¼ �j , ��j, idj, �idj are the roots of the characteristic polynomial

pjðsÞ ¼ s4j þ rjL
2s2j � l2j L4 (12)

and

�j ¼
�rjL

2

2
þ l2j Lþ

rjL
4

4

 !1=2
2
4

3
5
1=2

; dj ¼ ð�
2
j þ rjL

2Þ
1=2. (13)

The fundamental response hðxjÞ, has the same shape for each segment, but depends on different values of the
involved physical parameters such as the flexural stiffness and the masses per unit length of each substructure.

The substitution of Eq. (9) into de boundary and continuity conditions leads to a linear algebraic system

UðlÞq ¼ 0, (14)

for the vector q of order 8� 1

q ¼ ½A1 B1 C1 D1 A2 B2 C2 D2�
T. (15)

Here, the matrix U is of order 8� 8 and it has the form U ¼ BF, where B is a matrix of order 8� 16 formed
with the coefficients associated to the boundary and continuity conditions. F is a matrix of order 16� 8 whose
components are values of the solution basis at the ends of the column and the conditions at the position of the
intermediate concentrated mass. Observe that by using the initial values of the dynamical basis given by
Eq. (10) then the system order is reduced to 4� 4.
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Non-zero solutions of Eq. (14) are obtained for frequency values that satisfy the characteristic equation:

detðUÞ ¼ 0. (16)

For determining the natural frequencies we solve the characteristic equation for �j and compute the
corresponding parameter lj in order to find dj.

4. Results and discussion

Results for the first four eigensolutions are presented as functions of the system parameters. In order to
investigate the effect of small disorders on the system dynamics, the ratio of the peak deflection amplitude in
one span to that in the other span, G, is introduced. For each natural frequency, the corresponding amplitude
ratio or degree of mode localization G between the two spans is defined as

G ¼

jX 1j

jX 2j
; for jX 1jXjX 2j;

jX 2j

jX 1j
; for jX 1jojX 2j;

8>><
>>: (17)

where X 1 and X 2 are the maximum amplitudes of displacements of the spans. If the vibration is confined to
one of the substructures, G becomes large. The sign of this parameter indicates the substructure at which the
vibration is confined: positive for vibration localization in the second substructure and negative for the first
one. To be consistent with the terminology in Ref. [4], a mode is considered as localized when jGj42. In our
numerical studies, a disorder or disturbance parameter, denoted by D, is chosen to be vary between 2% and
10%.

The values of the system parameters were chosen accordingly to the experimental setup described in Refs.
[6,7]. In our simulations, we used EI1 ¼ EI2 ¼ 58:8Nm2, L ¼ 1:0m, Mc ¼ 1:0 kg or 2.3 kg, M ¼ 4:05 kg,
m1 ¼ m2 ¼ 0:567 kg=m, P ¼ 400N and x1 ¼ 0:50m. The maximum load is chosen to be smaller than the first
buckling load, to ensure that o1 is real, according to Sugiyama et al. [7].

4.1. Effects of small disturbances in the intermediate mass

Figs. 2 and 3 show the effects on mode localization due to variations of the intermediate concentrated mass
position and magnitude, respectively. In Fig. 2 only the mass Mc ¼ 1:0 kg is considered. The model
localization factor for Mc ¼ 2:3 and 1.0 kg is shown in Fig. 3.

In both figures, we observe that the maximum value of G is less than one for all modes. We observe also that
as the disturbance increases the factor of localization decreases for all vibration modes. It is clear from the
plots that it does not occur vibration energy confinement, according to our definition of localization.

5. Column without tangential follower thrust

Interesting results arises when we do not consider the effect of the tangential follower thrust, that is, when
we do P ¼ 0 in Eq. (1). In this case, free vibrations can be determined by solving the differential equation for
the amplitude distribution X jðxjÞ which satisfies

X
ðivÞ
j ðxjÞ � l2j X jðxjÞ ¼ 0; j ¼ 1; 2 (18)

for each segment of the column. The fundamental basis hðxjÞ now is given by Claeyssen and Soder [8]

hðxjÞ ¼
sinhðljxjÞ � sinðljxjÞ

2l3j
(19)
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Fig. 2. Amplitude ratio G as a function of the disturbance parameter D for disturbs on Mc position: (a) first; (b) second; (c) third; (d)

fourth mode.
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for j ¼ 1; 2, and is the solution of the initial value problem

hðivÞðxjÞ � l4j L4hðxjÞ ¼ 0,

hð0Þ ¼ 0; h0ð0Þ ¼ 0; h00ð0Þ ¼ 0; h000ð0Þ ¼ 1. (20)

Some applications are discussed in the sequel.
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Fig. 3. Amplitude ratio G as a function of the disturbance parameter D for disturbs on Mc magnitude; (�) Mc ¼ 2:3 kg; (�) Mc ¼ 1:0 kg.

S.N.J. Costa et al. / Journal of Sound and Vibration 315 (2008) 961–969966
5.1. Cantilevered column with intermediate concentrated mass

For numerical simulations we consider the same material properties as before, except for intermediate
concentrated mass Mc. Here we compute the amplitude ratio G for Mc ¼ 0:25, 0.50 and 0.75 kg.

The simulations for small disturbances D on the concentrate intermediated mass magnitudes do not show
mode localization occurrence. However, when we disturb its position we obtain the results shown in Fig. 4.
Observe that all modes are localized to some degree for Mc ¼ 0:25 and 0.50 kg. Nevertheless, for Mc ¼ 0:75 kg
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Fig. 4. Amplitude ratio G as a function of the disturbance parameter D for disturbs on Mc magnitude. (�) Mc ¼ 0:25 kg, (�) Mc ¼ 0:50 kg
and (�) Mc ¼ 0:75kg; (a) first; (b) second; (c) third; (d) fourth mode.

Table 1

Natural frequencies and degrees of mode localization for ordered system (f o; Go) and for disordered system (f d ; Gd )

Mode f o (Hz) Zo f d (Hz) Zd

1 681.42 0.000 681.48 1.015

2 2142.80 0.009 2197.52 �2.873

3 2249.00 0.021 2426.11 2.428

4 4615.12 0.005 4614.94 �2.531

5 7026.73 0.033 7703.70 2.061
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the amplitude ratio is smaller than 2.0 for the first and second modes, indicating that mode localization does
not occur. Note also that mode localization in the higher modes is more sensitive to the system parameters
than in the lower ones, for all values of Mc. Tests were performed for intermediate concentrated masses higher
than 0.75 kg, but for all those cases mode localization does not occur.

5.2. Cantilevered column with a rotational spring at the middle support

Now, we comment some results for a column with a rotational spring instead of a intermediate concentrated
mass. The modal analysis for this case is done considering the boundary conditions given by Eq. (2) and the
continuity conditions at x ¼ x1 given by w1ðt;x1Þ ¼ 0, w2ðt; x1Þ ¼ 0, w01ðt;x1Þ ¼ �w02ðt; x1Þ and
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Fig. 5. First normal modes: (—) initial system; (þ) disturbed system; (a) second; (b) third; (c) fourth; (d) fifth mode.
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w001ðt;x1Þ ¼ w002ðt; x1Þ þ kw02ðt;x1Þ. The occurrence of mode localization phenomenon is examined introducing a
disturbance on the length L2 in �5%. For simulations we have used the following parameters (in the ordered
case): EI1 ¼ EI2 ¼ 2� 107 Nm2, L1 ¼ L2 ¼ 0:5m, m1 ¼ m2 ¼ 20 kg, k ¼ 2� 108 Nm.

The amount of mode localization is given in Table 1 for the first five frequencies, where Go is the mode
localization factor for the initial system and Gd represents the mode localization factor for the disturbed
system. Selected normal modes are shown in Fig. 5: for the initial system, all the modes are not localized; on
the other hand, for the disturbed system, all the modes, except the first one, are localized to some degree. Table
1 confirms these results. Note that weak coupling will cause the system to be sensitive to the disturbance,
independently of the system periodicity.

From the results of this work, we propose that mode localization may occur in non-periodic structures as
well as periodic ones. Nevertheless, further studies on the mode localization phenomenon for general non-
periodic structures are required.
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